IOP SClence jopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

One-loop amplitudes for W+3 jet production in hadron collisions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
JHEP01(2009)012
(http://iopscience.iop.org/1126-6708/2009/01/012)

The Table of Contents and more related content is available

Download details:
IP Address: 80.92.225.132
The article was downloaded on 03/04/2010 at 11:36

Please note that terms and conditions apply.



http://www.iop.org/Terms_&_Conditions
http://iopscience.iop.org/1126-6708/2009/01
http://iopscience.iop.org/1126-6708/2009/01/012/related
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

PUBLISHED BY IOP PUBLISHING FOR SISSA

RECEIVED: October 20, 2008
ACCEPTED: December 17, 2008
PUBLISHED: January 7, 2009

One-loop amplitudes for W + 3 jet production in
hadron collisions

R. Keith Ellis and W.T. Giele

Fermilab, Batavia, IL 60510, U.S.A.
E-mail: £llis@fnal.gov|, giele@fnal.goy|

Zoltan Kunszt

Institute for Theoretical Physics,
ETH, CH-8093 Ziirich, Switzerland
E-mail: kunszt@itp.phys.ethz.cH

Kirill Melnikov

Department of Physics and Astronomy, Johns Hopkins University,
Baltimore, MD 21218, U.S.A.
E-mail: kirill@phys.hawaii.edy

Giulia Zanderighi

Rudolf Peierls Centre for Theoretical Physics, University of Ozxford,
1 Keble Road, Ozford, U.K.
E-mail: .zanderighil@physics.ox.ac.uk

ABSTRACT: We employ the recently developed method of generalized D-dimensional uni-
tarity to compute one-loop virtual corrections to all scattering amplitudes relevant for the
production of a W boson in association with three jets in hadronic collisions, treating all
quarks as massless.

KeyworDs: NLO Computations, Jets, QCD, Standard Model.

© SISSA 2009


mailto:ellis@fnal.gov
mailto:giele@fnal.gov
mailto:kunszt@itp.phys.ethz.ch
mailto:kirill@phys.hawaii.edu
mailto:g.zanderighi1@physics.ox.ac.uk
http://jhep.sissa.it/stdsearch

Contents

Introduction

=

=

[V
-

The method

[l
(1)

Dirac algebra, spinors and polarization vectors for gauge bosons
B.1] Four-dimensional case
B.3 D-dimensional case

H. Processes with two quarks, a W boson and gluons
B Color decomposition of the amplitude

o =M= ©u g

3 Numerical results for 0 — gggggW

Bl. Processes with two quark pairs, a W boson and a gluon
b.1] Color decomposition of the amplitude
b.9 Numerical results for 0 — ggQQgW amplitudes

& EEE

Conclusions

=

Numerical results

=

A.J] Numerical results for 0 — gggggW amplitudes
Numerical results for 0 — ggQQgW amplitudes

EEE

1. Introduction

Physics analyses at the LHC will benefit if accurate predictions for background and signal
processes become available. Arriving at such predictions often requires next-to-leading or-
der (NLO) QCD computations. This is particularly true for multi-particle processes where
the tree-level scattering amplitudes involve the strong coupling constant at a high power.
In those cases, changing the renormalization scale often leads to O(1) changes in the cross-
section and more accurate predictions can only be obtained with NLO computations [I].

The need for NLO corrections to processes with a vector boson and jets is particularly
pressing. Corrections to vector boson + 1 jet processes and vector boson + 2 jet processes
have been presented in refs. [J—[f] and have been successfully compared with data in refs. [g,
[1. The processes PP — W/Z + N jets for N > 3 have a special importance. They
constitute the principal background to a number of processes, such as top-pair production
and t-channel single top production. In addition, PP — W/Z + N jet production is an
important source of jets + missing energy events, which is often regarded as a key channel
in the search for physics beyond the Standard Model.



Techniques for NLO computations in the Standard Model in general and in QCD in
particular are well developed. Traditional methods for NLO calculations are based on
the observation that each Feynman diagram can be represented as a linear combination
of tensor integrals. These tensor integrals can be reduced to scalar four-, three-, two-
and one-point functions by exploiting Lorentz invariance; this procedure is known as the
Passarino-Veltman reduction technique [f].

While recent refinements of this procedure [ -[§] have transformed it into a powerful
computational tool, there are two problems inherent in it. First, the number of diagrams
in a particular process grows faster than N! where N is the number of external particles.
While processes with five or more external particles are rare at the Tevatron, the increase
in energy and luminosity of the LHC makes consideration of processes with N > 5 particles
phenomenologically mandatory. Second, in the course of the Passarino-Veltman reduction
procedure for high-point functions, there are numerical instabilities related to the appear-
ance of Gram determinants. The severity of this problem also increases with the number
of external particles, because of the concomitant increase in the rank of the integrals.
These two problems make the application of the Passarino-Veltman reduction technique to
processes with more than five external particles highly non-trivial [E,@] For example,
currently there is not a single full process with six external particles for which NLO QCD
corrections are known.

While it may happen that traditional methods of one loop computations are able to
overcome these problems [[9, [J], it is important to develop alternative solutions. One
promising approach is the method of generalized unitarity that has been developed by
Bern, Dixon, Dunbar and Kosower [2(]. Advances by Britto, Cachazo, Feng [R1], R3] allowed
the development of analytic methods for the calculation of the full amplitude, including
the rational part, using recursion relations [R3-R5. A further recent advance by Ossola,
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Pittau and Papadopoulos [R§] energized attempts to develop numerical procedures based
on unitarity [27-R9).

A new computational scheme based on D-dimensional unitarity has been developed in
ref. BQ]. We will refer to this method as generalized D-dimensional unitarity. In refs. [B1],
BJ) the generalized D-dimensional unitarity method was further developed and was shown
to be quite robust. In particular, it was explicitly demonstrated [B1] that generalized D-
dimensional unitarity is an algorithm of polynomial complexity where the evaluation time
for one-loop pure gluonic amplitudes with N external particles scales like N”. Moreover,
it was also shown that generalized D-dimensional unitarity can be applied to processes
with massive fermions [BJ]. The results of these studies strongly suggest that generalized
D-dimensional unitarity is an efficient computational algorithm which is now in a position
to have a phenomenological impact.

The goal of this paper is to make the first steps towards the application of generalized
D-dimensional unitarity to phenomenology. We focus on the computation of virtual one-
loop corrections to one of the important background processes at the Tevatron and LHC
for which the one-loop corrections are still unknown — the production of the W boson in
association with three jets. To this end, we have to consider one-loop corrections to the



processes

0—u+d+g+g+g+WT,
0—u+d+Q+Q+g+WT, (1.1)

and may assume, without loss of generality, that the quark () does not couple to the
W boson. We demonstrate that straightforward application of generalized D-dimensional
unitarity allows us to compute all matrix elements required for the description of these
complicated processes.!

The paper is organized as follows. In the next section, we summarize the salient
features of generalized D-dimensional unitarity. In section 3 we discuss the Dirac algebra
and the choices of the polarization vectors in four- and higher-dimensional space-times. In
section 4 we describe the computation of all primitive amplitudes relevant for the process
0 — udgggW ™. In section 5 we focus on the amplitudes with four quarks, a gluon and a
W boson. We conclude in section 6. Numerical results for a specific phase-space point are

collected in appendix [A.

2. The method

The method of calculation that we employ in this article is generalized D-dimensional
unitarity. The method relies on the observation [Bd] that one-loop scattering amplitudes
in QCD can be fully reconstructed once tree-level scattering amplitudes are known for
complex on-shell momenta of external particles, in, say, six- and eight-dimensions. The ne-
cessity of knowing tree-level scattering amplitudes in higher-dimensional space-times stems
from the fact that in QCD one-loop amplitudes are divergent and require regularization.
Such regularization is conveniently done by continuing the dimensionality of space-time
from four to 4 — 2¢. At the end of the calculation, the limit ¢ — 0 is taken, but vestiges of
the regularization survive as particular finite contributions (rational terms) in the scatter-
ing amplitudes. It was pointed out in [B{] that the rational part of the amplitude can be
determined by exploiting the dependence of residues of one-loop amplitudes on the dimen-
sionality of space-time. Since this dependence is linear, it is sufficient to know these residues
in two different space-time dimensions to reconstruct the residue as a function of D.

For technical reasons, it is convenient to deal with scattering amplitudes where exter-
nal particles are ordered and no permutations are allowed. Such ordering, for example,
automatically fixes the flavors of all internal lines in the highest-level N-point function
that contributes to a particular N-particle ordered amplitude. It is well-known that such
ordering can be achieved without sacrificing gauge-invariance [BJ—Bj]. For tree-level am-
plitudes, ordering of external particles appears naturally in color-ordered amplitudes. For
one-loop amplitudes color ordering does not automatically lead to a complete ordering of
all particles in the amplitude. To achieve this, color-ordered amplitudes are further decom-

&

posed into primitive amplitudes [BG). Those primitive amplitudes can be computed with

'In this article, we do not consider loop corrections with massive top quarks. Those contributions can
be obtained along the lines described in @]



the help of the color-stripped Feynman rules [B6—B§]. Note, however, that for a given prim-

itive amplitude only color-charged particles are ordered while color-neutral particles must

be inserted in all possible locations to achieve a gauge-invariant result. For our purposes,

this implies that the ordering of the W boson is not fixed and we have to account for all

possible insertions of the W bosons between % and d quarks in a given primitive amplitude.
To define a primitive one-loop amplitude, we employ the following set of rules:

e we order all external particles that carry SU(3) color charge;

e we draw a parent diagram with the direction of all fermion lines fixed such that
the loop is always on the right-side of an upwards oriented fermion line. The order
of the external particles is defined by reading the diagram clockwise. This defines
left-handed primitive amplitudes;?

e for an N-point scattering process, in general, the parent must be given by an one-
particle irreducible N-point function, represented by a diagram with N propagators
in the loop. For some orderings it may happen that such a parent does not exist, in
this case we draw the diagram by adding dummy lines;

e we construct all possible cuts of a parent and we throw away all cuts that contain
any dummy line;

e we process each cut as required by generalized D-dimensional unitarity; tree-level
on-shell amplitudes, needed for the computation of residues, are calculated using
color-stripped Feynman rules.

The parent primitive diagrams that are required for the calculation of W + 3 jet amplitudes
will be presented later in the paper.

The calculation of residues of primitive amplitudes requires the knowledge of tree-
level amplitudes in six- and eight-dimensional space-time for complex momenta of external
particles. The necessary matrix elements are constructed by employing Berends-Giele re-
currence relations [BJ]. Recall, that these recurrence relations connect off-shell currents
of different multiplicities and with different particle content. The on-shell scattering am-
plitudes are obtained from the on-shell limits of those currents. For the purposes of this
paper, we need to employ currents with up to six on-shell external particles; a particular
example is a fermionic current with three different fermion flavors and a gluon that con-
tributes to some cuts of the @ +d + W+ + Q + Q + g scattering amplitude. We point
out that, in a numerical program, it is possible to define those currents in a recursive way
treating the number of external gluons as a parameter; currently, this is a necessary, (but
not sufficient) prerequisite for the construction of fully automated computer codes for NLO
QCD computations.

2There are also right-handed primitive amplitudes, where the loop is to the left of an upwards oriented
fermion line. Since left and right primitive amplitudes are related, in this article we only present left
primitive amplitudes @]



3. Dirac algebra, spinors and polarization vectors for gauge bosons

3.1 Four-dimensional case

For Dirac matrices it is convenient to use the Weyl representation where the ~-matrices

01 . 0 —of 1 0
gl <1 0>=’Y <UZ 0 >=’Y (0 _1> (3.1)

Consider a massless fermion with momentum p = (¥, p, py,p-) and let py = E + p,.

are given by

Solving the Dirac equation for massless quarks, we find the following solutions

VP 0

i v/ 0

qul(p) — (p py)/ D+ 7 U)\:—l(p) — ‘ , (32)
0 (pe — ipy)/ /P
0 —VD+

where A = +1 refers to fermion helicity. Because p; vanishes for £ = —p,, the solution for

the fermion moving in the —z direction requires care. Taking the limit, we arrive at

UA:l(p) = 0 ) UA:—I(p) = \/ﬁ . (3-3)

It is easy to see that in the massless case, the anti-particle solutions of the Dirac equation
are related to the particle solutions so that vy(p) = u_x(p).

The polarization vectors for massless gauge bosons in four dimensions are also well
known. We present them here for completeness. For a gluon with momentum

p = E(1,sin 6 cos ¢, sin 0 sin ¢, cos §),

the polarization vector reads
1
ex(p) = 7 <0 , cos 0 cos ¢ — sgn(E)Nisin ¢, cos 6 sin ¢ + sgn(FE)\icos ¢, — sin 0) . (3.4)

In this paper we consider outgoing gluons; for this reason, all scattering amplitudes are
computed with the complex conjugate vector €3 (p).

3.2 D-dimensional case

Generalized D-dimensional unitarity requires the knowledge of tree-level scattering am-
plitudes in higher-dimensional space-time. To compute those amplitudes, we need D-
dimensional polarization vectors for gluons, as well as spinors for fermions in D dimensions.
Polarization vectors for gluons were discussed in detail in [B(, B1]] and we do not repeat that
discussion here. Weyl fermion spinors in higher-dimensional space-time are constructed as
follows.



We construct a spinor solution for a fermion with light-like momentum p by using an
auxiliary light-like vector n such that n-p # 0

P (D) _ _(D) D
u;i(p,n) = (n), wui(p,n)=x; "(n . 3.5

](p7 ) \/2p—n><] ( )7 ](pv ) X] ( )\/2]9—7'L ( )
Here p = p,I'*, where the summed index p runs over D components, (the first four of which
are the 0,z,y, z) and I', are the Dirac matrices in D dimensions. The index j specifies the
spinor polarization states. We choose the D-dimensional, p-independent spinors XS-D) (n)
in such a way that

o(D/2-1)

S Pm e P m) = a. (3.6)
j=1

In this case, it is easy to see that the w;(p,n) spinors satisfy both the Dirac equation for
massless fermions and the completeness relation

9(D/2-1) o
i prp
> ui(p,n) ®@a,(p,n) = 2o = P (3.7)
=1

We conclude that w;(p,n) is a valid choice for on-shell fermion states.

The above construction involves an auxiliary vector n and, for this reason is quite
flexible. Having such a flexibility turns out to be important, especially since we have to
construct on-shell spinors for complex momenta. We give a few examples below.

We consider a D-dimensional vector n = (19, N, Ny, N, {Nie(p-4)}), choose ng =
1/2,n, = 1/2 and set all other components to zero. Then, we need to find the spinors x
such that

o(D/2-1) 1
S PmerDm) == 5 To—Tx). (3.8)
j=1

Since I'g z 4, » are all block-diagonal ], with “blocks” being 4 x 4 matrices, a D-dimensional
spinor is constructed by simple iteration of the four-dimensional construction. The four-
dimensional spinors are given by

(4) _ (3.9)

o O O =

In six dimensions the eight-component spinors are choosen to be

(4) (4) 0 0
© _ [ x1 ©) _ [ X2 ©) _ ) _ : 3.10
X} < 5 ), X ( 0 ), X3 <X§4)), X4 (Xg;)) (3.10)

The case D = 8 is a simple generalization of the above construction.



We now present two alternative procedures to define fermionic spinors which we employ
when the particular choice of the vector n leads to numerical instabilities. This occurs for
the on-shell momentum p = (pg,0,0,pg) since (p-n) = 0. To handle this case, we change
the vector n to n = (1/2,0,0,—1/2,0p_4) in the above formulas. However, even this can
be insufficient. Indeed, note that a complex momentum p = (0,p,,py,0) can be light-like.
In this case, we need to choose yet another n. We can take n = (1,1,0,0,0p_4) and choose
the following four-dimensional spinors

0 -

O = =

0
@_10
1

. Xy = (3.11)

0 -1

The higher-dimensional spinors are obtained from these four-dimensional solutions along
the lines discussed above (see eq. (B.10)).

4. Processes with two quarks, a W boson and gluons

In this section we consider the one-loop scattering amplitudes 0 — @ +d + (n—2) g+ WT.
We refer to w as ¢ and d as ¢ and suppress the label of the W and its decay products
in scattering amplitudes. We note that for a given primitive amplitude the W boson is
inserted in all possible places when the diagram is traversed in a clockwise direction from

q to q.
4.1 Color decomposition of the amplitude

At tree-level, the 0 — ¢+ ¢+ (n — 2) gluons + W scattering amplitude can be written as

AT (15.24,34,...,mg) = g" > Z (T%® . T%m) b Ax(1g,2450(3) - -, 0(n),),
gES,—2

(4.1)
where S,,_5 is the permutation group of (n —2) elements and A%°°(14,24;0(3),,...,0(n),)
are color-ordered amplitudes. For all the amplitudes computed in this paper, we take
the Wud interaction vertex to be —iy#(1 — ~5)/2, so that neither electroweak couplings
nor the Cabibbo-Kobayashi-Maskawa matrix elements are included. The W decays to
v(q1)+eT(ge2); to account for this, we replace the polarization vector of the outgoing W by

The choice of the polarization vector e_ corresponds to the W boson interactions in the
Standard Model. The generators of the SU(3) color group are normalized as Tr(7°T?) = §9
and satisfy the commutation relation

(7%, T% = —F5T¢ . (4.3)

This normalization allows us to employ the color-stripped Feynman rules [Bd-Bg] to cal-
culate color-ordered scattering amplitudes.
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Figure 1: Parent diagrams for primitive amplitudes AL (14,3,,...my,24,m+1,...n,) and
AL/ (17,3¢,...mg,24,(m +1)4...ng). All other parent diagrams that contribute to this prim-
itive are obtained by considering all possible insertions of the W boson without changing relative
ordering of quarks and gluons. The shaded circle stands for dummy lines.

At one-loop, the color decomposition becomes more complicated. Using the color basis
of ref. [i(]], the one-loop scattering amplitude can be written as a linear combination of left
primitive amplitudes

AP (15,24, 34, ..., ng) (4.4)

n
=g" Z Z (TMT%S o 'T%pTwl)izil (F%I)H o 'F%n)xwz
p=20€Sy_2

x(—l)"A,LL(lq, U(p)g, e ,0(3)g, 24, a(n)g, o op+ l)g)

n—1
n g 1/2
Y 2 s oA (1. 2:00) 0 0(m),) |
j=106Sn,2/Sn;j

where for p = 2 the factor (T"'T),-zgl — (T*T"1);," and for p = n the factor
(F--F)gizy — Oz12,- In the second term S,; = Z;_; is the subgroup of S, _5 that

leaves Grg? invariant. The color factors read
Grl(3,...,n) = No(T .- T), 01,
Grggg (3;4,...,n) =0,
Cri(3,...,+ L +2,...,n) = te(T9% - TO+)(T%+2 .. To) 0 =3 .. n—2
Cri (3,...,n) = tx(T™ - T™) 5,7 (4.5)

Parent diagrams for primitive amplitudes that involve two quarks and gluons are shown in
figure [l
4.2 Numerical results for 0 — gqgggW

We have extended the Fortran90 program Rocket [B1] to include the computation of primi-
tive amplitudes with quarks, gluons and gauge vector bosons. Rocket computes primitive



amplitudes in the four-dimensional helicity scheme [T, 2. By default, the computation
is done with double precision and, if a particular phase space point is deemed numerically
unstable, it is recomputed with quadruple precision using the package developed in ref. [EJ].
The scalar integrals are evaluated using the QCDLoop package of ref. [[4].

Note that, since Fortran90 supports recursive functions, implementation of Berends-
Giele recursion for an arbitrary number of gluons is straightforward and indeed has been
done in our program. Therefore, at least in principle, we can compute one-loop amplitudes
for the process udW™ + n gluons where n is an arbitrary number, We have checked that
our program produces gauge-invariant one-loop amplitudes and correct 1/¢2 and 1/e poles
for n up to ten. For n < 3, we have checked that our results agree with the known one-loop
amplitudes for W + 1 and W + 2 jets [, Bd, {3, B7]. For the description of W + 3 jets, we
require one-loop amplitudes with five external partons and this is what we focus on in the
remainder of this paper.

We present numerical results for the primitive amplitudes with seven external particles
at a particular kinematic point considered in ref. [Iff. The momenta are chosen to be

p1(q) = %(1,cosacosﬂ, cos asin 3, sin «v)
p2(q) = g(—l,sinﬂ,COSHSingb, cos 0 cos ¢) ,
p3(g) = g(—1,—Sin@,—COSQSin¢,—COSQCOS¢),
pa(g) = 5(1,1,0,0),
ps(g) = £ (1.cos B,5in 5,0).
pe(e™) = %(1,COS’VCOSﬁ, cosysin 3,sin7y) ,
p7(v) = —p1 —p2—P3 —Pa—DP5 — D6, (4.6)
where p = 7GeV and
9:%, ¢:%, a:g, 7:%, cosﬁ:—%. (4.7)

The momenta pg and pr are used to define the polarization vector of the W boson, eq. (7).
(1/2]

in the appendix, see tables -] and tables -H, respectively. We have checked that all primi-

Our results for unrenormalized primitive amplitudes AL and A,LL’ are summarized
tive amplitudes have correct divergences and are gauge invariant. Moreover, we have tested
the validity of our results for primitive amplitudes by reproducing a diagrammatic compu-
tation of color-ordered amplitudes by taking appropriate linear combinations of primitive
amplitudes. Finally, our program reproduces the results for the leading-color primitive
amplitude AL (14,2,,34,44,5,) computed recently in ref. [£§].

Next, we address the issue of the numerical stability of the computation. As was done
earlier for similar studies of gluon amplitudes, we take care of numerical instabilities by
performing computations with higher precision. Since higher precision slows the compu-
tation, it is desirable to use it only for the phase-space points that suffer from numerical
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Figure 2: Accuracy for AF(17,2,7,37,4F,5) (left panel) and for AL (17F,3,,4,,5,,2,) (right

panel) for 10° randomly generated phase-space points. The raw double precision data as well as
the result of numerical improvements are shown (see text for details). The inset shows the same
plots in a linear scale.

instabilities. The question we have to address therefore is how to detect numerical insta-
bilities. To study this, we generate 10° random phase-space points using Rambo [{7] with
minimal constraints £, > 1072/s, |n| < 3 and AR = \/An? + A¢? > 0.4 and calculate
the primitive amplitudes for 0 — gggggW with double and quadruple precision. For each
phase-space point, we can check whether or not the double precision computation of a
primitive amplitude reproduces the analytically known results for double and single poles
in € and if the system of equations is solved with sufficient accuracy for each residue. To
explain the latter test, we remind the reader that each residue is completely parameterized
by a certain number of coefficients. We can check how well these coefficients are computed
by choosing a random loop momentum, calculating the residue and checking how well this
residue is obtained from the previously computed coefficients. We assign a relative error
to each coefficient following the mismatch in this reconstruction. These errors are used to
estimate the total error in the calculation of the primitive amplitude. By requiring that
the relative precision in the poles and in the amplitude is better than 10~3 we find that
around 0.3% of the points are recomputed in quadruple precision.

After unstable points are recomputed with quadruple precision, the numerical insta-
bilities are under control. This is demonstrated in figure [} for two primitive amplitudes
Ab(1t 2, 3,,45,5,) and Ab(1f, 3,,45,5,,2, ) where we show the number of events as a
function of the relative accuracy €y defined as the absolute value of the difference between
double and quadruple precision results, divided by the quadruple precision result. We note,
however, that the numerical stability of the amplitudes illustrated in figure f is generic,
largely independent of the choice of the primitive amplitude and helicities of quarks and glu-
ons. In fact, the two amplitudes considered in figure P are on the two sides of the spectrum.

The leading-color amplitude Aé(lj{, 245 39_,4;, 59_) has the minimal number of cuts, since

— 10 —



the W boson can only be inserted in one place, between 1; and 2,. On the contrary, the
amplitude Aé(lj{, 3;,4;, dg 5 2[1_) has the mazimal number of cuts since the W boson can
be inserted in four different places. Thus, among all primitive amplitudes with two quarks
and three gluons, maximal computational effort is required for Aé (1:{,3;,4;, 54 2,) so
that the issues of numerical stability may be expected to be worst in this case.

We expect that further optimization of the procedure for identifying unstable points
may be required to arrive at an optimal compromise between numerical accuracy and speed
of the code. For instance, with an arbitrary precision package such as that of ref. [,
one can design a procedure where instead of using fixed quadruple precision for unstable
points, the number of digits in the higher precision calculation is established according to
how unstable the point is. We plan to study these issues in the future.

Finally, we remark on the CPU-time required for the evaluation of one-loop ampli-
tudes. We find that it takes about 45-50 msec to evaluate the leading-color primitive
amplitude Aé(lq, 24,34,44,54) on a computer with 2.33 GHz Pentium Xeon processor us-
ing the intel fortran compiler. This is comparable to the evaluation times for six-gluon
primitive amplitudes [@] For more complicated primitive amplitudes, the number of cuts
increases and the evaluation times scale accordingly. For example, for Aé(lq, 39:44,54,2q¢),
the case with the maximal number of cuts, it takes about 160 msec to compute a single

primitive amplitude.

5. Processes with two quark pairs, a I/ boson and a gluon

5.1 Color decomposition of the amplitude

We now turn to processes with two quark pairs, the W boson and a gluon, 0 — w4+ d +
Q+ Q+ W +g. We will again refer to @ as ¢ and to d as ¢q. To construct color-ordered
primitive amplitudes, we assume that the W boson can not couple to the quark ). The
color decomposition of the four-quark and one-gluon amplitude at tree-level reads

o 1 -
B™(13,24, 39, 4@, 59) = g° |(T%);10,,° Bt + 1 (1), 0,° BEs®
Cc

o 1 o
H(T5), 06,1 BYS + < (1), 26,1 BEe | (5.1)
C

in an obvious notation where a5 is the color index of the produced gluon. The color
decomposition of the four-quark and one-gluon amplitude at one loop reads

B (15,24,35,4¢,54) = ¢° | Ne(T),16,2 Bz + (T%),16,7 Brya
—I—Nc(Tas)iQfs 551 B7;3 + (Tas)izs 551 B7;4 ) (5‘2)
Each of these one-loop color-ordered amplitudes can be further written as

B7;i = B'[;i + % '[71,2/2]7 = 17 27 3747 (53)

— 11 —



Figure 3: Prototype parent diagram for primitive amplitudes with four quarks, a W boson and
a gluon which contain a closed fermion loop. The gluon can be inserted in four possible ways into
the prototype graph, leading to four primitive amplitudes. Note that the W only couples to q. The
solid blobs denote the dummy lines introduced in section 2.

¥~ 0 Q\‘\./Q TN~ 0

/W\ /UUUD\

Figure 4: Prototype parent diagrams for primitive amplitudes with four quarks, a W boson and
a gluon for classes a,b and c¢. The gluon can be inserted in four possible ways into any of the
prototype graphs, leading to four primitive amplitudes in each case. For the diagrams in class b,
all possible insertions of a W boson to a given parent primitive should be considered; note that the
W only couples to g. The solid blobs denote the dummy lines introduced in section 2.

to separate the diagrams with a closed fermion loop from the other ones. The amplitudes
Bm and Bgll/ 2l can be written as linear combinations of primitive amplitudes. Those
primitive amplitudes are shown in figures fJ and J.

For the amplitudes with an additional closed fermion loop we find

Bél,{m = 1/2](1Q75974Q73Q7 )7
3%42] = 1/2]( 4Q73Q72Q75 )7
[1/2] — 1/2]( 4Q 3Q 5g 2 )
B[1/2] — 1/2](1q74Q75g73Q7 ) (54)

The three classes of primitive amplitudes that we need to consider for four-quark
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processes without closed fermion loops are shown in figure fi,

by Bl 4 Bl (5.5)

(2

BE} BE

(2

Amplitudes from each class are written as linear combinations of primitives amplitudes.

' 1
B = <1 = W) Altle (1q,2q,3Q,4Q, (

9) — "

—A“ (1g:5¢,2¢,40:3g) — (1q 2q,5g,3Q, 4g) — A (14524, 54,40, 33)
( ) +
(1g ) +

For class a, we find

14,54, 24,30, 4Q) (5.6)

— A (14,2,,30,5,,4q) — A“ 1g, 24, 40, 595 30 b (14,24,40,35, 5 )),

B[ —+A[1 (1q=2q=5g=4Qv3Q) A[l (1q=2q=4Q73Q7 59)
(

1
7 (AR (1,50,24.3g,4) + A} (1q,5g,2q,4Q,3Q)>,

14, 24,40, 59+ 30

5.7)

B = <1 - %) AP (14,2,,54,36,4q) — % ( b9 (14,54, 24,35, 40) (5.8)
— A (14,50,24,40,30) — A (14,24,30, 54, 40) — A (14,24,40,5,,30)
— A (15,2,,35,40,5,) — AP (15,2,,40,35,5,) + AP (15,2,,54,40,3 ))
B = — AP (14,54, 20,4, 35) — AP (10,24, 59, 4. 35) — AP (14,24, 4.3, 5¢)
_Nig (AR (1,20,40.50:30) + AL (13,240,350, 4q) ) - (5.9)

Note that in this formula there are amplitudes where fermions and anti-fermions alternate
(7qQQ) and amplitudes where this is not the case (7gQQ). The latter can be reduced to
the former using the following C-parity relation

Al (16,,..,zq,...,4g4,...,3g3,...> _ (—1yntiglle (167,..,2q,...4%4,...,3é;,...).

Q
(5.10)
Here n is the number of external gluons sandwiched between the Q and @ spinors.
For classes b and ¢ we obtain
Bgl]lb = LA[LlLb (167 5974Q73Q=2q) )
Bll® — -7 (A[” (10,59, 40,3, 24) + AL (15,40, 54,35, 2,)
+AI (15,40,34,54,2,) )
Bgl;g’;b = %A[Ll“) (16746273@7597211) )
B = Al (15,5,,40.35,2,) — AP (14,40,35.5.2,) — AL (14,449,345, 24, 5)
(1 - W) AP (14,40,54,30,2,) - (5.11)
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Figure 5: Accuracy for A[Lll’a(lg,2;,5;r,

space points. The raw double precision data as well as the result of numerical improvements are

35,4252) amplitude for 10° randomly generated phase-

shown. The inset shows the same plots in a linear scale.

1], I,
BHC - WA[L] “(14:54: 403+ 29) ,
C
(1],c

BYYC = — A (12,50, 49,30, 20) — AP (15,40, 59,30, 24) — AL (14,40, 30, 54, 24)

1 1],¢
- (1 - m) AP (15,40,30,24,5) ,

1],c 1 1],c

Bl = FgA[L] (14,40, 3054 2¢) » (5.12)
1],c 1 1],c 1],c

Bri = _W(A[L} (1g:59:40: 3, 24) + AL (13,40. 3G, 59, 2)

+A1 (15,40,30:24:5) ).

5.2 Numerical results for 0 — GgQQg¢W amplitudes

We now present numerical results for 0 — ggQQg¢W amplitudes. We use the kinematic
point in eq. (f£6), where the momentum p3 is the momentum of @ and the momentum
p4 refers to Q. The results of the calculation are given in tables 1. The results for
primitive amplitudes given in these tables are sufficient to obtain numerical results for
the color-ordered amplitudes Br,;, i = 1,...4 using the equations given in the previous
subsection. In fact, we have checked our results for the primitive amplitudes by calculating
the color-ordered amplitudes B7;, i = 1,...,4 diagrammatically and verifying that linear
combinations of the primitive amplitudes computed with Rocket reproduce results of the
diagrammatic computation. The numerical stability of a four-quark amplitude is illustrated
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in figure [j. It is very similar to the numerical stability of the amplitudes with two quarks
and three gluons discussed earlier in detail and to other four-quark amplitudes.

6. Conclusions

In this paper we have shown that a straightforward application of the generalized D-
dimensional unitarity method proposed in ref. [BQ] allows us to compute all one-loop scat-
tering amplitudes required to describe the production of a W boson in association with
three jets at hadron colliders. We observe satisfactory performance in terms of numerical
stability and required run times. We feel confident that the results of this paper provide
a solid foundation for computing the one-loop virtual corrections to the production of the
W + 3 jets in hadron collisions.

On a more general side, the current version of Rocket computes one-loop amplitudes for
processes 0 — n gluons, 0 — gg+n gluons, 0 — ggW +n gluons and 0 — ggQQW +1 gluon.
It is straightforward to extend the program to include similar processes with the Z boson
and processes with massive quarks 0 — ¢t +n gluons. This list is a testimony to the power
of the method and indicates that the development of automated programs for one-loop
calculations may finally be within reach.
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A. Numerical results

In this appendix we present the numerical results for various primitive amplitudes that we
employ for the computation of W + 3 jet processes. Numerical results are presented for
the phase-space point given in eq. (fL.f) for various helicities of the external particles. For
convenience, we present the results for the ratio of a one-loop primitive amplitude and the
corresponding primitive tree-level amplitude defined as?

1 AV1,2.3.4,5,6,7) T(1+ e)T(1 — ¢)?

i -
1,2,3,4,5,6,7) = =
L ( )&y 0y Ty 9y Yy ) er Atrco(l, 2’3’4’ 5’ 6, 7) y Cr (47T)2—EF(1 _ 26) )

(A1)

where in this appendix we always indicate explicitly the dependence on the lepton momenta
from the W decay.

3Note that A™°°(1,2,3,4,5,6,7) denote here primitive tree-level amplitudes, as opposed to the color
ordered amplitudes A%°¢(14,24; 0'(3)97 R U(n)g) appearing e.g. eq. (@), where the quarks are separated
by a semicolon from the gluons.
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A.1 Numerical results for 0 — gggggW amplitudes

Helicity 1/¢ 1/e e

AT (172, 35 4555 6,7 7) —0.006873 + 10.011728
Pt 2, 3F 4k 55 657,) —4.00000 | —10.439578 — §9.424778 5.993700 — i 19.646278
Ao (12, 35 48 5, 6] 77) 0.010248 — i 0.007726
PNt 2, 35 4k 5, 657,) —4.00000 | —10.439578 —9.424778 | —14.377555 — i 37.219716
AVe(15 25 35 48 55 677 7)) 0.495774 — i 1.274796
PNt 2; 3, 4 55 65 7,) —4.00000 | —10.439578 —9.424778 | —1.039489 — i30.210418
AT (172, 3, 45 5, 6] 7)) —0.294256 — 1 0.223277
Pt 2, 3, 4t 5, 657,) —4.00000 | —10.439578 —i9.424778 | —1.444709 —i26.101951

Table 1: The primitive tree-level amplitude A™°(14,2,,34,44,5,4,67,7;) and the ratio
T[Ll] (14,24,34,44,54,67, 71) of a primitive one-loop amplitude to the primitive tree-level amplitudes
for various helicities.

Helicity 1/€ 1/e €
ATee(17 35 24 45 55 67 7)) —0.005446 + i 0.009804
rN 3t 2, 4k 5F 657,) —3.00000 | —8.676830 —46.283185 | —1.423339 — 414.443863
Atree(1r 3T 2o 4F 561 7 0.000364 + ¢ 0.004550

q g “q *g g ¥ l
rNt i 2, 4t 5, 657,) —3.00000 | —8.676830 —i6.283185 | —11.406265 — i 16.485295
ARCS(1F 35 2, 45 55 67 7)) 0.341643 — i 0.310960
N3, 2, 4 5F 657,) —3.00000 | —8.676830 —i6.283185 | —5.430180 — 421.180247
Atree(1r 3245 565 7 0.024966 — 70.156703

q g “q g 79 ~ l
ri(1F 37 27 48 57 65 77) —3.00000 | —8.676830 —i6.283185 | —4.868668 — i21.036597

Table 2: The primitive tree-level amplitude A™°(14,3,24,44,54,67, 7)) and the ratio
T[Ll](lq, 34,24,44,54,67,7;) of a primitive one-loop amplitude to tree-level primitive amplitude for
various helicities.

Helicity 1/€ 1/e €°
Atree(1r 3t 4t oo 586 7 —0.005563 — 7 0.030746
q Y9 g <9 Yg 7] l
ril (1 35 4 27 55 61 T)) —2.00000 | —7.835662 —i3.141593 | 13.662096 — i 25.637707
Atee(1X 3T 4205 64 7 0.022677 4 0.085524
q Y9 79 “q g V] l
P13 43 2, 5, 67 7)) —2.00000 | —7.835662 —i3.141593 | —9.177581 — i 16.265480
AT (15 3, 45 24 55 67 7,) —0.098988 + i 1.958409
r (13, 48 27 5567 7)) —2.00000 | —7.835662 —3.141593 | —12.140461 — i 15.924761
ARS(1F 35 45 24 5, 67 7)) —0.283565 + i 0.841833
ri (1 35 4F 27 57 67 7)) —2.00000 | —7.835662 —i3.141593 | —13.465828 — i 13.730719

Table 3: The primitive tree-level amplitude A™°(14,34,4,,24,54,67, 7)) and the ratio
T[Ll](lq, 3g,4g,24,54,67,7;) of a primitive one-loop amplitude to the primitive tree-level amplitude

for various helicities.
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Helicity 1/¢ 1/e €
AT (15 35 48 55 2, 65 77) 0.017883 + i 0.009214
P st alsg 260 7) —1.00000 | —3.334232 —i0.000000 | 11.973924 — i8.033958
AeC(17 35 48 55 25 67 7;) —0.033289 — i 0.082348
r[L”(qu 34445, 2, 657 —1.00000 | —3.334232 4 :0.000000 | —1.783190 + i 1.552944
A1 3, 4y 54 2, 677)) —0.738428 — 1 0.372652
ri (1 37 4F 55 25 6 7)) —1.00000 | —3.334232 —:0.000000 | —5.654597 + i 0.276608
AT (1F 3, 45 5, 24 67 7)) 0.552856 — i 0.461853
P sy af s, 2765 70) —1.00000 | —3.334232 +i0.000000 | —6.461431 + i1.451815

Table 4: The primitive tree-level amplitude A™°(14,34,44,54,2,,67,7;) and the ratio
m(lq, 34,449, 54, 24,67, 7;) of a primitive one-loop amplitude to the primitive tree-level amplitude
for various helicities.

Helicity 1/¢2 1/e €°

A (12, 35 45 5467 7,) —0.006873 + i 0.011728
it/ 2](1+ 2, 354555 6+ 7,) | 0.00000 | 0.000000 —0.000000 | —6.001512 — i26.601839
A (17 27 35 45 5, 6* 71 ) 0.010248 — i 0.007726
At o, 3k a4t 5, 6+ 77) | 0.00000 | 0.000000 —30.000000 | 7.227836 — i4.090839
Atree(1F 2, 3, 48 5+ 6+ ) 0.495774 — i 1.274796
Mt 2o 3, 4t 5t 6+ 77) | 0.00000 | 0.000000 +40.000000 |  0.096288 — i0.114398
A (152, 3, 45 5, 6* ) —0.294256 — i 0.223277
P2 2, 3 4F 5, 6+ 77) | 0.00000 | 0.000000 +40.000000 | 0.164410 — i0.134601

Table 5: The primitive tree-level amplitude A™°(14,24,34,44,54,67, 7)) and the ratio
T[LI/Q] (17,24,34,44,54,67, 7)) of a primitive one-loop amplitude to the primitive tree-level amplitude
for various helicities.

Helicity 1/¢2 1/e °

ATee(1F 352, 45 5565 7)) —0.005446 + 7 0.009804
P21k 3 2 4558 6+ 7;) | 0.00000 | 0.000000 —i0.000000 | —0.127241 —71.316987

A“CC( 33424 44 5, 65 7l ) 0.000364 + i 0.004550
Pt 3+ 2, 4555 6+ 7;) | 0.00000 | 0.000000 + ¢0.000000 | 0.000000 + 40.000000

A“ee(lq+ 3, 2, 4F 5+ 6+ ) 0.341643 — i0.310960
P 3; 24 5) 6+ 7 ) | 0.00000 | 0.000000 -+ i0.000000 | —0.020783 — i0.001593

Atreeuq+ 3, 24 4455, 6+ ) 0.024966 — i 0.156703
P20k 3, 2, 4t 5, 6+ 7;7) | 0.00000 | 0.000000 —40.000000 | 0.000000 — i0.000000

Table 6: The primitive tree-level amplitude A"™°(14,34,24,44,54,67,7;) and the ratio
rg/z](lq,3g,2q,4g,5g,6[, 7;) of the primitive one-loop amplitude to the primitive tree-level am-
plitude for various helicities.
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A.2 Numerical results for 0 — GgQQg¢W amplitudes

Numerical results for amplitudes with two quark pairs, a W boson and a gluon are presented

in tables below.

Helicity 1/€ 1/e €°
AT (175524 354567 7)) —1.347977 — i 0.593626
riheqt 5k o; 35 4567 77) | —2.00000 | —1.906388 —i6.283185 | 12.513239 —i16.727811
A“°°(1q 54 24 35 4+ 657,) —0.570749 — i0.316836
rieqt s, 2; 35 4+ 6+ 7,7) | —2.00000 | —1.906388 —i6.283185 | 12.452841 — i14.482266
A"ee(1qf 2, 5+ 35 45 6; ) 0.734834 — 0.360895
et 2, 5 4354567 77) | —3.00000 | —6.083408 —i3.141593 | 9.466663 —i4.461718
A"ee(1qf 2, 5, 35 45 6; 7)) 0.421057 + 4 0.463392
rithe(t 2, 5, 354567 77) | —3.00000 | —6.083408 —i3.141593 | 7.337316 — i3.094966
A”CC(qu 2, 3554 456, 7;) —0.288607 — 40.043034
riheat o 3555456, 7)) | —2.00000 | —1.906388 —i6.283185 | 14.470591 — i16.520704
A‘f°°(1qf 2, 3554 45 61_+ ) —0.148841 4-40.001847
riheqt o 3555 456 77) | —2.00000 | —1.906388 —i6.283185 | 10.478262 —16.315474
A"ee(1qf 2, 35455567 77) 0.901749 + ¢0.997556
rithe(1t oy 35 4+ 55 6+ 7,7) | —3.00000 | —5.946351 —9.424778 | 10.012255 — §29.539947
A"ee(qu 2, 35 45 54 6; ) 0.298533 — 0.147741
rithet oy 35455, 67 77) | —3.00000 | —5.946351 —i9.424778 | 9.462997 —i25.465941

Table 7: The primitive tree-level four-quark amplitudes A"°® and the ratio rj

e o the one-loop

class a primitive amplitude to the corresponding primitive tree-level amplitude for various helicities.

Helicity 1/€ 1/e €°
AT (1 5525 45 3567 7)) —1.347977 — i 0.593626
e 5+ 2, 4+ 5306 7,7) | —2.00000 | —3.109446 +0.000000 | 7.650907 —i1.630983
A‘f°°(1qf 5, 4+ 35 6+ 77) —0.570749 — 10.316836
rieat 5 2 4+ 530 6+ 77) | —2.00000 | —3.109446 4 40.000000 | 7.388565 + i2.000057
A"ee(1qf 2; 5+ 4+ 3Q 6+ ) 0.446227 — i0.403929
rithet o; 5t 4+ 7,7) | —3.00000 | —6.730261 —i3.141593 | 8.835307 — i 10.218599
A”CC(L; 2, 5, 4 3Q 7)) 0.272217 + i 0.464577
riheat o 5, 4k 5306 77) | —3.00000 | —6.730261 —i3.141593 | 2.417473 —i12.686072
A‘f°°(1qf 2, 4+ 5+ 35 6+ 7 ) 0.288607 + 70.043034
riheato; 4 5+ 3567 77) | —2.00000 | —3.109446 +40.000000 | 11.636607 + i2.670357
A"ee(1qf 2; 4+ 5y 3567 7)) 0.148841 — 0.001185
rithe( 2; 4+ 543567 77) | —2.00000 | —3.109446 +i0.000000 | 3.098383 —0.972210
A”CC(L; 24 453055 6+ 7)) 0.613143 + i0.954522
riheat o; 453555 6+ 7,7) | —3.00000 | —6.502556 —i3.141593 | 9.563123 — i 12.742650
A“°°(1qf 2, 453555 67 7)) 0.149692 — i 0.146556
riheato; 4 53055 6 77) | —3.00000 | —6.502556 —i3.141593 | 7.832425 —i8.905177

Table 8: The primitive tree-level four-quark amplitudes A" and the ratio r}

(tha of the primitive

one-loop class a amplitude to the corresponding primitive tree-level amplitude for various helicities.
Note the different ordering of the quarks @ and @ compared to table 7.
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Helicity 1/€ 1/e e
AT (17 5545352, 67 7)) —0.901749 — i 0.997556
riP (1 5544 3524 6 77) | —1.00000 | —3.334232+170.000000 | —8.027321 —40.968722
A"ee( ¥5, 4+ 3 2, 6+ ) —0.298533 + 4 0.147741
rhast s, 4+ 3527 6+ 77) | —1.00000 | —3.334232 + i0.000000 —4.397007 — 4 3.109084
A"ee(1qf 4+ 5+ 3 2, 6+ 77) 0.288607 + i 0.043034
rib et 4+ 54 35 2 6+ 77) | —1.00000 | —3.334232 +0.000000 | —5.997531 — 40.856042
A”CC(qu 4+ 5, 3 2, 6+ ) 0.148841 — 0.001185
bt 4+ 55 35 2 6+7,) | —1.00000 | —3.334232+i0.000000 | —6.462353 — i0.674696
A"ee(1qf 4+ 35 5+ 6+ ) —0.734834 + 4 0.360895
ri (1 4 35 5+ 2, 6+ 77) | —1.00000 | —3.334232 —i0.000000 | —6.039221 —40.200173
A"ee(1qf 44 3 5y 24 67 7 ) —0.421057 — 4 0.463392
rit (1t 4 35 5 2,67 77) | —1.00000 | —3.334232+40.000000 | —6.632788 —i0.178166
A“°°(1qf 4+ 2, 55 6+ 7)) 1.347977 + 4 0.593626
ribt 35 4+ 2, 55 6+ 77) | —2.00000 | —7.835662 —i3.141593 | —12.743438 — i16.092839
A"ee(1qf 36 4+ 2, 5, 6+ ) 0.570749 +10.316836
it P17 35 4+ 2, 5, 6+ 77) | —2.00000 | —7.835662 —i3.141593 | —14.463179 — i 14.071065
(11,6

Table 9: The primitive tree-level four-quark amplitudes A and the ratio 7} of the one-loop

class b primitive amplitude to the corresponding primitive tree-level amplitude for various helicities.

Helicity 1/¢ 1/e €
AT(17 5544352, 67 7)) —0.901749 — 70.997556
ritheas st 45 3Q 2,6/ 77) | —1.00000 | —3.826559 —i0.000000 | —10.068901 — i0.284089
A““(lq 55463524 6, 7)) —0.298533 + 1 0.147741
ritheas s, 5 2 67 7,) | —1.00000 | —3.826559 —i0.000000 | —9.118256 —i0.316181
A”“(qu 4554 3 g; 27 6? ) 0.288607 + ¢ 0.043034
rile(f 4h 55 3524 67 7,) | —2.00000 | —5.954375 —i3.141593 | —6.343258 —9.293058
A"ee(qu 455,352, 677)) 0.148841 — 0.001185
e (1F 445,352, 67 7,7) | —2.00000 | —5.954375 —i3.141593 | —8.567533 — i11.440611
A”“(qu 453555 2, 67 7)) —0.734834 + 4 0.360895
PeOF 48835502, 6777) | —1.00000 | —3.826559 40.000000 | —9.495931 +i0.100657
A““(qu 453555 2 67 7)) —0.421057 — 4 0.463392
(1 45355, 2, 677,7) | —1.00000 | —3.826559 —i0.000000 | —9.538700 —i0.299195
A"ee(1§ 30452, 5467 7,) 1.347977 + 1 0.593626
e (1F 35452 5567 7,) | —1.00000 | —3.826559 +140.000000 | —9.696279 + 0.000000
A”“(qu 304524 55 67 7,) 0.570749 + i 0.316836
(17 35482, 5, 677,) | —1.00000 | —3.826559 +140.000000 | —9.696279 + 0.000000

Table 10: The primitive tree-level four-quark amplitudes A%®® and the ratio r[L  of the primitive

one-loop class ¢ amplitude to the corresponding primitive tree-level amplitude for various helicities.
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Helicity 1/€ 1/e e
AT (17 55453527 67 7)) —0.901749 — 0.997556
Pt 5**4*’3 2, 67 7,7) | 0.00000 | —0.666667 —i0.000000 | —2.527058 — i0.104842
A (15 5, 35 2, 677 —0.298533 + i 0.147741
1/2(1;’5 53524 67 7,) | 0.00000 | —0.666667 +i0.000000 | —2.366982 + i0.089047
AT(17 4455 3524 6] 7)) 0.288607 + i 0.043034
1”(13*4**5**3 2, 61 77) | 0.00000 —0.66666 + 0.000000 | —2.656572 4 4 0.000000
Atee(17 44, 54 352 657,) 0.148841 — i 0.001185
”2u;4 5:32 6*7) 0.00000 | —0.666667 + 40.000000 | —2.656572 + i 0.000000
AT (17 4535 5+ 2 677) —0.734834 + i 0.360895
(1 4f 3 5*’2 6*’7 ) | 0.00000 | —0.666667 + i0.000000 | —2.887087 — 40.164880
Atree(1y 53 5g 24 6* ) —0.421057 — 7 0.463392
ri/ (1 4f 35 5;'2;’6;'7;) 0.00000 | —0.666667 + 40.000000 | —2.749917 + i0.137009
AT(1745 3524 55 67 7)) 1.347977 + i 0.593626
ri/ Ay 4f 3524 54 67 7,7) | 0.00000 | —0.666667 +i0.000000 | —2.662151 + i0.000000
AT(15 44352, 5, 61 7)) 0.570749 + i 0.316836
(1 4 3524 5, 67 7,) | 0.00000 | —0.666667 +i0.000000 | —2.662151 + i0.000000

(1/2]

Table 11: The primitive tree-level four-fermion amplitude A and the ratio ./~ of the primitive

one-loop amplitude to primitive tree-level amplitude for various helicities.
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